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In a previous paper we considered the nonlinear stability of a cylindrical mixing 
layer in an incompressible fluid at large Reynolds numbers. Nonlinear evolution 
results in the formation of vortex structures in the vicinity of the corotation radius 
r,. This paper considers the same model but in a compressible fluid. A fundamental 
difference implied by the presence of compressibility is the possibility of the 
generation of disturbances which are no longer localized near the shear layer but 
embrace the entire region. These are acoustic waves generated in the region of 
corotation resonance and emitted into the periphery. In the r > r, region lines of 
equal density are trailing spirals. The nonlinear evolution of such disturbances is 
determined by redistribution of the mean flow inside the critical layer (CL). It is 
shown that only two possible types of CL, viscous and unsteady, can be realized here. 
For both types of these regimes, evolution equations describing the dynamics of a 
spiral density wave amplitude are obtained and their solutions analysed. It appears 
that at any values (provided that they are small enough) of initial supercriticality of 
the flow, an explosive growth of amplitude occurs which continues as long as values 
comparable with background ones are reached. 

1. Introduction 
In a previous paper (Shukhman 1 9 8 9 ~ )  I considered the nonlinear evolution of a 

mixing layer in a cylindrical geometry. The fluid was assumed to be incompressible 
such that disturbances arising as a result of the shear flow instability were localized 
near the shear layer. Of great interest is the investigation of a mixing layer in a 
rotating compressible fluid. Such a model can have applications to the problem of the 
spiral structure of galaxies. According to one of the existing hypotheses, the 
formation of a spiral structure is attributable to a hydrodynamical instability caused 
by particular characteristics of rotation curves of galactic gas disks (see, for example, 
Fridman 1978 and references therein). 

Compressibility introduces an essentially new element into the nature of the shear 
flow instability, i.e. the emission of acoustic waves by the shear layer becomes 
possib1e.t Let compressibility be characterized by Mach number M = RIASZl/c, where 
c is the velocity of sound, R is the radius where the shear layer is localized, and 

t Strictly speaking, these disturbances can only be called acoustic waves sufficiently far from the 
critical level. Near it, they have a more complex character and, at small Mach numbers, do not 
differ greatly from disturbances in an incompressible medium. 
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AD = Q,-Q, is the difference between angular velocities in the layer (a more 
accurate definition of M will be given below). M = 0 or c = co correspond to the 
incompressible case. If an extremum is present on the vorticity profile, then the 
Kelvin-Helmholtz instability arises, and this occurs for any sign of AQ. A growth of 
the Mach number, generally speaking, stabilizes this instability; in this case, 
however, a new type of instability appears, the centrifugal (or radiative) instability. 
However, it does not occur at all values of the difference AQ but only when the 
internal part rotates faster than the periphery: 0, > Q, (Morozov 1977, 1979). 
Specialists in stellar dynamics know an analogue of this instability as the ‘ instability 
of circular orbits ’. To explain this, we shall consider the limiting case of very large 
M ,  or small c, when pressure is negligibly small. Each fluid particle can then be 
considered independently and the stability of its circular orbit can be investigated 
relative to a small disturbance. It appears that the circular orbit is unstable if 
K,  < 0, where K~ is the square of the so-called epicyclic frequency : K, = 2Q(2Q+ rQ’), 
Q(r )  is the angular velocity of an orbit of radius r ,  and the prime denotes a derivative 
in r. In terms of ‘ cold ’ (c = 0) hydrodynamics this same condition can be formulated 
as g < 0, where 5 = ( l / r )  (r2Q)’ is the flow vorticity. For c =I= 0 (M =+ co), this criterion 
is modified but a necessary condition for instability, i.e. the presence of a sufficiently 
abrupt decrease in angular velocity on part of the profile, remains. 

From the formal point of view the new element, in comparison with its 
incompressible case, implies here a variation of the boundary condition for r + co : 
instead of the condition of a decreasing disturbance, the radiation condition arises. 
This factor changes drastically the character of the peculiarity solution for the 
neutral mode at the point r = rc,  where Q(rJ = Q,, and Q, is the azimuthal phase 
velocity of the wave pattern. For real boundary conditions (which occur in the 
incompressible case) and in the presence of only one critical layer on the profile, it is 
easy to show that the corotation radius r = r, coincides with the radius at which the 
vorticity has an extremum, i.e. c ( r c )  = 0 (for plane flows u”(y,) = 0). If, however, the 
boundary conditions are complex ones, then c ( r c )  =I= 0. In the first case the Frobenius 
expansion of the eigenfunction of the neutral mode near r = rc does not contain 
peculiarities, i.e. it is a regular one, while in the second case this expansion contains 
a contribution of the form ( r  - rc)  In ( r -  r,) with the proportionality coefficient 
-C(rJ.  Accordingly, the resonance point r = rc in the first and second cases is 
customarily called the regular and singular point, respectively. In this paper we want 
to investigate the nonlinear evolution of a weakly supercritical flow with a singular 
resonance point, unlike the cases with a regular point that we have investigated 
before (Churilov & Shukhman 1986, 1986a, b ;  Shukhman 1 9 8 9 ~ ) .  We shall 
demonstrate that, as in the papers just cited, the main nonlinearity is associated with 
flow redistribution in the critical layer (CL) region, but unlike the situations realized 
in those papers, here the nonlinearity gives rise to a faster increase of disturbances, 
thus leading to their explosive increase up to (dimensionless) amplitudes of order 
unity. Therefore, it is not possible to follow, within the framework of a weakly 
nonlinear theory, the evolution to its end (to the saturation stage). The rapid increase 
of disturbances leads to the fact that a nonlinear CL cannot be produced here during 
the course of the evolution, so that the evolution is proceeding only through regimes 
with either an unsteady or viscous CL (which, however, with increasing amplitude is 
also replaced by an unsteady one). The same picture emerges in the case of the 
evolution of a stratified shear flow (Churilov & Shukhman 1988). 

Thus, the objective of this paper is twofold. On the one hand, we want to take the 
first step towards a nonlinear theory of a compressible differentially rotating fluid, 



Nonlinear evolution of spiral density waves 589 

bearing in mind subsequent applications to interpreting laboratory experiments on 
the modelling of the spiral structure of galaxies (Fridman et al. 1985) ; on the other 
hand, our intention here is to study a new type of nonlinear evolution equation that 
arises in this case. As will be shown in the following, a similar equation can be 
obtained, through certain simplifying modifications, from an equation derived in an 
earlier paper by Hickernell (1984) for a far simpler model of an incompressible shear 
flow on the /?-plane. 

After this paper had been submitted to be considered for publication, a paper by 
Goldstein & Leib (1989, to be referred to herein as G&L) appeared which had much 
in common with the present work. It addresses spatially growing instability waves 
on compressible shear layers between two parallel streams and a nonlinear evolution 
equation is derived, which actually coincides with that obtained in this paper. 
However, despite the identity of the equations obtained (except that our equation 
governs a temporal growth rather than spatial growth), there is a fundamental 
difference in the critical-layer structure in our paper and in G& L’s. G& L examined 
the situation when the neutral phase velocity is subsonic relative to both streams and 
in that case - unlike ours - real conditions of disturbance decay instead of radiation 
conditions are specified as the boundary conditi0ns.t Consequently, the critical level 
also coincides with the inflexion point. But because G&L also introduced into the 
model the temperature inhomogeneity, T o ( y )  + 0, the critical level turned out to 
coincide not with the usual inflexion point but with a so-called generalized inflexion 
point, where ( u ~ / & ) ~  = 0 or ua/uh = Th/Tc. Such a modification of the model leads to 
the structure of eigenfunctions of the neutral mode and, hence, the structure of the 
inner solution being different from ours. Thus, the pressure disturbance, according to 
G&L, is regular on the critical level, i.e. does not contain a logarithmic contribution, 
while for our case this contribution is decisive. Instead, G&L have a different type 
of singularity : the eigenfunction of the temperature disturbance has a pole 8 - Tc/y 
as y+O. The main nonlinearity in G&L turns out to be associated just with this 
singularity. Nevertheless, very surprisingly such an important difference in the 
critical-layer structure does not lead to a difference in the evolution equations. The 
nonlinear term in both cases has absolutely the same form, and the difference applies 
only to the form of the coefficient of the nonlinear term : in G& L it is proportional 
to Th (and disappears for the case with a homogeneous temperature), while in our 
model, where T’ = 0, it is proportional to u: (or more exactly, to c), which reflects 
the difference in the origin of the predominant nonlinearity in the two models under 
consideration. 

This paper is organized as follows. In $2 we shall obtain some results using linear 
theory which will be needed subsequently : we shall find neutral curves corresponding 
to azimuthal numbers m and shall calculate the instability growth rate in the vicinity 
of the neutral curves. Section 3 will give the derivation of amplitude equations for 
the regimes of a viscous and an unsteady CL; and an analysis of their solutions will 
be made in $4. The results obtained in $4 were also presented in an earlier preprint 
by this author (Shukhman 1989b), having the same title as this paper, and largely 
coincide with the results obtained almost simultaneously and independently in G& L. 
The results will be summarized and discussed in $5.  

t In this sense G& L’s paper is not basically about sound waves, unlike ours, where the radiation 
of acoustic waves plays a fundamental role. 
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2. Linear theory 

continuity equation, 
We take a two-dimensional system of the NavierStokes equation and the 

as the initial system of equations. We choose a flow with v,. = 0 and up = r52(r), where 

Q ( r )  = $2,[1- tanh (In ( r / R ) / D ) ]  (2.2) 

as the undisturbed flow. Here v, and up are the radial and azimuthal velocities, 
respectively, and a(r) is the angular velocity. It is evident that  when r+O, 52-+52, 
and the angular velocity on the periphery 52, is zero such that A52 E 52,-52, = 52,. 
The undisturbed pressure p,, and density poo will be taken independent of both the 
radius as well as the sound velocity c . t  Viscosity 7 is taken constant. It is supposed 
that the centrifugal force is balanced by some external force Fg. In the case of 
galaxies this is the gravitational force produced by a stellar subsystem (see e.g. 
Chandrasekhar 1961, and Fridman & Polyachenko 1984). 

I n  what follows, we shall be using dimensionless variables, by putting R, = 1 ,  
A52 = 52, = 1, and poo = 1. We also introduce the Mach number M = R, AO/c = c-’ 
and the inverse of the Reynolds number u = T,I/(P,,R; A52) = T,I which will be assumed 
small such that i t  need be taken into account only near the critical level. By 
linearizing the system (2.1) written in cylindrical coordinates and omitting the 
viscous term, we reduce it to one equation for the density perturbation: 

‘2p, m252’(Qp+52) + - ( g ) ’ L ] + M 2 p l  252, = 0. (2.3) --[ r A2 A 2  252 52,-52 

Here A = A(r,SZ,) = m2(52p-52)2-K2, K~ = 2QC. All disturbances are chosen to be of 
the form -exp [irn(~-Q,t)]. 

Precisely the same equation occurs for pressure disturbance owing to the simple 
connection p ,  = M-,p,. The boundary conditions for (2.3) are written as 

p,+O when r + O ;  p;-ikp,-+O when r+co, (2.4) 

where k = m52,c-l = MmQ, is a radial wavenumber of an outgoing acoustic wave. 

2.1. Analysis of neutral modes 
For each m, equation (2.3) involves three parameters: M, D and SZ,, where a,, 
generally speaking, is complex. By solving (2.3) with the boundary conditions (2.4), 
we obtain 

52, = Re Q,(N, D )  + i Im QP(M, D ) .  

-f In this case we can take, without loss of generality, the simplified equation p = pc2 as the 
energy equation to complete the system (2.1). 
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The neutral curve is defined by the condition ImQ,(M,D) = 0 which gives the 
relationship D = D,(M). In this case 52, = 52,(M). (The case m = 0 must be considered 
separately. ) 

Let us discuss the properties of the neutral modes. In the limiting case, 
corresponding to M = 0, we have (Shukhman 1989a) : 

(2.5) 

1 
m 

D , ( M = O ) = - - ,  

pm(r,M=O) =cosh 

It is also easy to find the equation of the neutral curve for M 4 1 : 

D,(M) =D,(0)+SDm, 52,(M) = Q,(O)+SQ,, 652, =-@Dm,) 

Formula (2.6) shows that SD, < 0. This corresponds to the intuitive idea - which 
rests on results reported by Landau (1944) that unstable two-dimensional 
disturbances of a plane tangential discontinuity are stabilized with increasing Mach 
number - of the stabilizing role of compressibility as long as M is small : the range of 
unstable values of the shear width D becomes narrower (0 < D < D,). 

Equation (2.3), with real Q,, contains one singular point, a corotation resonance 
r = rc ,  which must be understood in the sense of the Lin indentation rule, i.e. in our 
case from above because Ol(r , )  < 0. (One can show that at points of the so-called 
Lindblad resonance r = rL, where A(rL) = 0 or 8 ( r L )  - 52, = & ( l / m )  K ( T ~ ) ,  the solution 
(2.3) does not have any singularities.) The presence of such a point leads to the fact 
that the real equation (2.3) has a complex solution. It is because of this that it 
becomes possible to satisfy the complex boundary condition (2.4). Let us discuss this 
point in greater detail. 

When r + co, (2.3) has an asymptotic representation p1 = (pm/r i )  eiks. We denote 
pl(r , )  = pc. Upon multiplying (2.3) by PI, where the overbar indicates complex 
conjugacy, and subtracting from the expression obtained the complex conjugate one, 
as well as assuming that (8,-52)-l + (52,-52+iS), S + + O ,  we obtain a radiative 
identity relating the amplitude of the outgoing wave pm to the value of the 
eigenfunction and to the flow parameters when r = r c :  

It becomes understandable from this identity that neutral spiral waves become 
possible only in the presence of corotation, and ( ~ ~ / 2 8 ) ;  + 0 must hold. This also 
constitutes the essence of the ‘anti-spiral theorem’ of the theory of the spiral 
structure of galaxies (Lynden-Bell & Ostriker 1967). 

From (2.7) it follows that the corotation lies in the region of those values of r where 
( ~ ~ / 2 8 ) :  - < 0. This establishes the range of possible values of 52, corresponding 
to the neutral curve (see figure 1) : 1 2 Qp 2 i(1 -D) = Q,(M = 0). With increasing 
M ,  8, increases compared with 52, in the incompressible case, the corotation radius 
is displaced towards the rotation axis. 
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c 1 1  

FIQURE 1. An explanation of the method of seeking the range of possible values of Qp for the neutral 
curves: )(1-D) < 52, c 1.  Here z = tanh (ln(r)/D), f2 = h(l - z ) ,  and r ( ~ ~ / 2 5 2 )  = (l-zz)(z/D- l)/D). 
The value z = 2, corresponds to the corotation radius. According to the radiative identity, the 
corotation is located in a region where ( K ~ / ~ Q ) ’  < 0 (i.e. when z < D). 

The form of the density variation p can be described qualitatively in the following 
manner. In a frame of reference rotating with angular velocity Q,, the mode with a 
given m is, where r < r,, a disturbance of non-spiral form such as a standing wave 
(i.e. the eigenfunction is real with an appropriate choice of the amplitude) with 
m-maxima and m-minima azimuthally - ‘ cart wheel ’, and when r > r,  it  represents 
a trailing m-arm spiral wave. (At a sufficient distance from the shear region the 
asymptotic behaviour of the radial part p1 has the form p1 - {,,,(Kr) inside and 
p1 - H$?(Kr) outside the corotation radius; K = M ( ( Q , -  l)2-4)s. J, and f i g )  are 
the Bessel and Hankel functions, respectively and their appearance is associated with 
the fact that far from the shear region (2.3) is reduced to the Bessel equation, owing 
to the disappearance (to an exponential accuracy) of all gradients Q’, K’ etc. In  a 
laboratory system the wave has a radial velocity directed outwards and equal to the 
sound velocity c. 

The mode m = 1 is worthy of a special discussion. In the incompressible case 
M = 0 it is a neutral one for any D (Shukhman 1989~) .  When M =+ 0, this degeneracy 
is cancelled. Analysis shows that when M 1 the mode is unstable a t  0 < D < 1 
(and more exactly, when 0 < D c 1 -+@), with the growth rate 

where 

nD yL = m Im Qp = {A@F(D)}1’(2-D) cos 
2(2--D)’ 

(1 -D)’( 1-20) (1  -’a), 2nD nD 
sin (216)) sin (Id)) 

F(D) = (2.9) 

so that for this mode the part of the D-axis from 0 to 1 is also the boundary of 
stability. The derivation of (2.8) and (2.9) is given in detail in the Appendix. 

The neutral curves D = D,(M) and Qp = Q,(M) for m = 1, 2, 3, and 4 were 
determined numerically in the range 0 c M < 10. The results are given in figure 2. 
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M 

5 

0 

m = l  

FIQIJRE 2. (a) Neutral curves D = D,(M) for different m. The instability region of each mode lies 
to the left of the corresponding curve. For m = 1, a segment of the abscissa axis 0 < D < 1 also 
belongs to the neutral curve. For the m = 0 mode, the value of M for the caw of a tangential 
discontinuity D = 0 is determined from the relationd11,(2M)/Z0(2M) = 2 to be 2.269. (Z(z) is Bessel’s 
function of the imaginary argument.) (b) As (a) but for the azimuthal phase velocity 52,. 

2.2. The instability 
The neutral curves are, at  the same time, the boundary of stability. It is easy to see 
that for each mode m the instability region lies to the left of the corresponding 
neutral curve. This is also confirmed by direct calculations. Moving away from the 
neutral curve in M (at a fixed D )  or in D (at a fixed M) and assuming SZ, + SZ, + 652, 
we obtain using the well-known procedure of perturbation theory 

It  SSZ, + I M  SM = &(r) pm(r)  dr = 0, (2.10) 

where (see also (3.15)) 

I M  =- I, dr { p m - p m +  g (; -pm yf} - 

(2.11) 

(2.12) 
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or, in explicit form 

(2.14) 

Here A ,  = d ( r  = 00)  = m2Qi. Contour C implies integration from 0 to co with 
indenting of the singular point r = re from above, p,(r) being the eigenfunction of the 
neutral mode. 

The dispersion equation (2.10) can also be written as a linear evolution equation 
(if we put 6QpA + ( i /m)  (dA/dt)) : 

(2.15) 
dA 
--(y,-imAQ,)A = 0, 
dt 

where yL = - Im ( I M / I , )  m6M, 

AQp = -Re ( I M / I t )  6M. 

(2.16) 

(2.17) 

Here yL and AQp are the growth rate and a correction to the phase velocity, and A(t) 
is the wave amplitude which is defined by the relationship p,(r) = A(t)V@(T). 

Some words about the m = 0 mode are in order. This mode does not have a critical 
level. The marginal stability is defined by the relationship w2 = 0, where the 
disturbance is chosen in the form -exp (-iwt). The eigenfunction of the neutral 
mode for p describes a ring localized near the shear layer. The neutral curve is given 
in figure 2. The mode is unstable above the neutral curve. We shall not comment on 
this mode in detail because it is of no special interest within the context of this paper. 

We want to construct a weakly nonlinear instability theory for finite values of M .  
It is clear that with finite M such a theory is completely correct only in relation to 
the m = 1 mode near its neutral curve. Indeed, near the marginal stability of any 
other mode m = m, > 1, modes with m < m, have a 6nite (not small) growth rate, 
and their rapid increase will inevitably distort the picture obtained of the evolution 
of the mode m = m,. Therefore, although the evolution equations obtained in this 
paper are formally applicable for any m, we should keep in mind that the true weakly 
supercritical regime is possible for m = 1 only. 

In summarizing this Section, we shall give the Frobenius expansion of the 
eigenfunction of the neutral mode. Assuming z = r -r , ,  we write 

(2.18) 
where 

V i ( r )  = 1 +ql z2 +q(ln IzI +B*)  ( z  + qz z2 + . . .) + . . . , 

C q = 2mz(f),$ = --(~),(~),($) 1 252 2Q 
> 0, f ( r )  = 
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The Lin indentation rule gives for the jump B :  

B+ -B- = -in (2.20) 

(see $4). It must also be stressed that the presence of a logarithmic term, i.e. the 
singularity of the resonance point r = rc, is associated with the difference from zero 
of the derivative of vorticity on the CL: (~~/252);  + 0. Using the notation of (2.19) 
the linear evolution equation (2.10) can be written in a form which will be more 
appropriate in the subsequent use of the method of matching asymptotic expansions 
(see (3.47)) 

FPS,”@padr+~[f -~) in+q(2inB-+m2)  52, 1 2m2652, = s, Qcpadr = 0, (2.21) 

where FP j,“ (. . .) dr denotes the finite part of the integral with the integrand 
containing the non-integrable singularity. 

3. The derivation of the evolution equation 
3.1. Preliminary analysis 

As in other problems dealing with the critical layer, the main nonlinearity in the 
evolution equations is determined by processes occurring within it (internal 
nonlinearity). This makes it possible to obtain nonlinear evolution equations in 
which the nonlinear terms have a universal character and are independent of the flow 
structure as a whole. Analysis of the situation treated in this paper, whose distinctive 
feature is the singularity of the resonance point r = r, (in the sense characterized 
above), shows that symbolically the evolution equation can be written as 

(In the linear part of the equation we omit the term with irnAQp which is present in 
(2.15) because it is readily eliminated by redefining the amplitude.) The expansion of 
the nonlinear term is done inA2/14, where 1 is the CL scale. As is well known, this scale 
coincides with the largest of the three scales: 1, - vi, 1, - y ,  and 1, -A t ,  where I , ,  l , ,  
and I ,  are the viscous, unsteady and nonlinear scales, respectively, y = A-l dA/dt, 
and v is inverse of the Reynolds number. In the case 1 = l , ,  the notation 1-1 
corresponds to the integral operator 9-l which denotes, roughly speaking, integration 
in time and coincides, in order of magnitude, with y .  The coefficients C, are 
proportional to (~~/252):.  

In other words, the expansion parameter is 
4 

h = ff) . 
As long as the amplitude is sufficiently small and the CL remains linear, i.e. as long 
as 1 >> l,, where 1 is one of two linear scales 1 = 1, or 1 = I,, this parameter is, indeed, 
small. Taking this into account, let us consider what the evolution equation must be 
like for different CL regimes and what CL regimes are, generally speaking, possible 
here. We use the amplitude-supercriticality diagram (figure 3). As usual, we want to 
consider the evolution of a disturbance with a very small initial amplitude, i.e. 
starting from the lower part of the diagram. Two cases should be distinguished here : 
(i) yL < d,  and (ii) yL > d. In the former the initial CL regime is a viscous one, and 
in the latter it is an unsteady one. Let us consider these cases in more detail. 
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Y 1. 0 1'3 

FIGURE 3. The amplitude-supercriticality diagram. The unsteady CL regime is shaded, and the 
viscous CL regime is unshaded. Curve 1, nonlinearity threshold for a v~scous CL : A - A ,  x (7: v:);; 
curve 2, nonlinearity threshold for an unsteady CL: A - A, y;. Vertical ayows indicate 
different stages of evolution: +, IAl - exp(y,t); *, JAl - ( t o - t ) - T ;  n*), IAl - ( t - t ) - E .  

(i) y L  < vi. We have 1 = 1, = vi B I,, l , ,  and our symbolic equation takes the form : 

A 3  
- = y ,A + C, 7. 
dA 
dt v 3  

(3.3) 

The level of competitive nonlinearity (or the threshold of nonlinearity, i.e. the value 
of the amplitude for which the nonlinear term is comparable with the linear one), 

A ,  - ( Y L V Y ,  (3.4) 
is shown on the diagram by curve 1. As will be apparent below, the sign of the 
nonlinear term is such that the nonlinearity exerts a destabilizing action. Therefore, 
the question arises as to what CL regime will occur when the amplitude exceeds this 
level, i.e. when A > A, .  

When A > A, ,  we have y - A2v-; and 1, - y - A2v-:. On comparing I,, 1, and l,, we 
obtain that 1, > l,, 1 ,  when A < vg. Thus, when A < vg and yL < vi, the CL regime 
remains a viscous one, and the equation does, indeed, have the form (3.3). 

Now let A > vi (but vi is again larger than yL). We have 1, > 1, and, consequently, 
1, - y should be taken as 1 in (3.1). In  symbolic form the evolution equation assumes 
the form 

- = yLA+f-*A3.  
dA 
dt (3.5) 

Since in this case y - A; 9 I ,  - At, the CL will be of unsteady rather than nonlinear 
type. Moreover, noting that in (3.1) the expansion proceeds virtually in the quantity 
(lN/Z)4) we conclude that it is not necessary to take account of higher-than-cubic 
terms because the inequality 1 9 I ,  remains valid throughout the entire evolution up 
to amplitudes A - O( 1 ) .  

(ii) yL > vi. In this case we at once have equation (3.5) with the level of 
competitive nonlinearity 

A ,  - y\ (3.6) 
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shown on the diagram by curve 2 which is matched with curve 1 on the boundary 
yL - 6 (with amplitude A - A). 

Thus, qualitative analysis shows that on the (A, y,)-disgram the viscous CL region 
is bounded by straight lines A = vi, and yL = vi and the remaining region (but where, 
of course, A 4 1 and yL 4 1) corresponds to an unsteady CL. The nonlinear CL 
cannot be realized in the course of the evolution (at least, within the framework of 
the weakly nonlinear theory, i.e. as long as A < 1). 

Our problem is that of writing the explicit form of the nonlinear evolution 
equations in regimes with a viscous or an unsteady CL instead of their symbolic form 
(3.3) and (3.5) and, using them, studying the evolutionary behaviour of the 
disturbance. 

3.2. The evolution equation in the regime with an unsteady CL 
As usual, it is necessary to solve separately the outer and inner (with respect to the 
CL) problems and to match the asymptotic expansions of the solutions. 

3.2.1. Scaling 
According to 93.1, we put 

a a 
= p--Q,-, 

a 
at a7 + - p = 1+€6P, (3.7) 

where 8 and p are the small parameters that characterize the disturbance amplitude 
and the growth rate of disturbances (y - O(,u)). The parameter p also defines 
simultaneously the scale of the unsteady CL. In  addition, 

p = €5. 
P 

We expand the disturbed quantities in harmonics : 

3.2.2. The outer problem 

( 1  = 1) harmonic. Assuming in (2.3) 
For the outer problem, we actually need only the expansion of the fundamental 

where the last relationship is need to take into account accurately the region r --f co, 
we perform two steps of the iteration process in powers of p. 

We have 
L'o)p'o) = 0 (3.10) 

whence we obtain 

The next step is 
p(O) = A(T, R)p,$(r).  
Z(O)p(') = Q*(r,R),  

(3.11) 

(3.12) 
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Taking into account that ~2 - r-t elkr when r --+ CO, from the condition for the absence 
of secular terms in p ( l )  (in other words, from the condition that $"&+(r)vi(r)dr 
converges on the upper limit), we obtain 

so that for Q(r)  we get 

(3.14) 

(3.15) 

From (3.12) we find p"):  

where 

is the second solution of the equation L(O)g, = 0 with the asymptotic representations 
pi - r-ie-ik' when r + co and ipb - r-m when r + 0. Taking account of the boundary 
conditions, we write p ( l )  as 

where 

(3.16) 

(3.17) 
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Here we designate 

599 

3.2.3. The inner problem 
For the radial and azimuthal velocities and density we put 

v, = EV, vv = Qr+eU, p = 1 +EP. (3.20) 

We now write the original system of nonlinear equations in the vicinity of r = rc 
using this notation, leaving only the terms which will be needed in the subsequent 
treatment : 

(3.21) 

We expand the functions P, V ,  and U in harmonics similar to (3.8). It appears that  
the main contribution to the nonlinear evolution equation is made by the term on 
the right-hand side of (3.22), and this contribution gives an interaction of the 
fundamental ( I  = 1) harmonic V, with disturbances of the mean ( I  = 0 )  flow U,. The 
contribution to the evolution equation resulting from the interaction of the 
fundamental ( 1  = - 1) harmonic with the second ( I  = 2) harmonic turns out to be of 
a smaller order of magnitude. Therefore, in our presentation we shall confine ourselves 
to the fundamental and zeroth harmonics. Analysis reveals that their expansions are 
representable as 

(3.24) I Pl = Py +ppy + p P y  + . . . , 
v, = V ~ l ) + P V ~ ’ + P 2 V ~ 3 ) + . . . ,  

u, = up +pup + . . . , 

(3.25) 

The desired evolution equation will be obtained by matching P\3) with the outer 
solution pi3) at O(p2) (or, equivalently, at O(s2/p3). 

E u - -  ( 
e 

Po = - P p  + . . . , v, = E V p  + . . . , - 2uol)+... .  
P P 

Let us give briefly the results of consecutive iterations: 
(i) The fundamental, Pi1) and Vil) 

Pi1) = A(T) ,  (3.26) 

(3.27) 
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(ii) The fundamental, Pp),  Vi2) and U(’) 1 

LYt Py)“ = qA, 

i a  
Here Yt = Y - 7 - ,  

m a ,  87 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

and the primed P is the derivative in Y. By solving (3.28) with the condition that at 
T + -  co all disturbances tend to zero, we find 

(3.32) 

One can show that the P1(7, Y) described by this formula is analytic in the upper 
half-plane of the complex variable Y (and even in the horizontal band of the lower 
half-plane Im (Y) > y,/rnO;). We have adopted here the same philosophy of 
‘adiabatic inclusion’ of the disturbance when T + -  co as in Churilov & Shukhman 
(1988).f This permits us to avoid the difficulty associated with the need to specify the 
initial conditions not only for the fundamental but also for all the other harmonics 
if the Cauchy problem is formulated for T = 0. 

Matching with the outer solution yields 

Aq(B+ -B-) = Piz)” dY = Aqin sign (a;), E 
whence we obtain the above stated relationship about the indentation rule from the 
above (when 0; < 0): 

Also, from analyticity of Pi2) in the upper half-plane it follows that 

B+-B- =-in. (3.33) 

(iii) The zeroth harmonics, U p ) ,  P r ) ,  and V(l) 0 

We have 

(3.34) 

(3.35) 

(3.36) 
(3.37) 

From (3.32) and (3.35), we find: 

U ~ ) ( T ,  Y) = (Er !!& dt, J: dt2A(7- ~,)A(T- t 2 )  exp [ - ima; Y(tl - t2)]. (3.38) 
rc KE 

Here the overbar denotes a complex conjugate. 

t A conceptually similar hypothesis about the adiabatic inclusion of the disturbance when 
x --f - 03 was adopted by G & L (1989) and Goldstein LIZ Choi (1989) in their analysis of the spatial 
evolution of disturbances. 
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(iv) The fundamental, Py), Vi3) ,  and Uiz). 
At this order we shall derive the desired evolution equation. We obtain 

LqPy)" = 4e,+%, (3.39) 

x A(T-tl)ki(r- t z )  (tl -t,)'exp{ - ima;  Y(tl - t z ) } .  (3.41) 
Here on the right-hand side (3.39) two contributions are distinguished : linear 4e, and 
nonlinear %, which are responsible for the linear and nonlinear parts of the 
evolution equation, respectively. It should be recalled that here the entire nonlinear 
contribution % is due to the nonlinear term V,aUo/aY in (3.22). 

Next, it is necessary to perform the matching to the outer solution. From (3.39) we 
find the asymptotic expansion Pi3)' as Y + f co : 
Pi3)' - (2q, +qqz)AY+2qqzAY(lnpY+B+) 

where ln(pY) is understood in the sense of indentation from above and the jump 
C+-C- is associated with non-analyticity of %& in the upper half-plane (for 
analytic in the upper half-plane, there would be no jump C and this is why the 
contribution from the second harmonic disappears at the order under consideration). 
We have 

where 

C+ - C- = Pig dY, (3.43) s 

{-mP&(r, Y) d Y  = imQ; JOm dt 

(. . .) dY = lim l(. . .) dY, 
L+m 

and Yt PyJ = %. (3.44) 

(3.45) 

By solving this equation in a manner similar to (3.28)' we obtain 
m 

%( Y, r - t )  e-imRb Y t  dY. 

We substitute (3.41) into (3.45) and integrate over Y: 

C+- C- = l(;r)c 2in 252 ( ~ ~ 5 2 ; z q [ o m  t3 dt [ d' daA(~- t )  A ( ~ - d ) k i ( ~ -  (1 +a) t ) .  

T C  

(3.46) 
By matching Pi3)' with pi3)' from (3.19) and taking account of (3.33) and (3.34), we 
find 

(3.47) 
The right-hand side of (3.47) is none other than the integral S c  @pa dr(K2/r), with 
indentation from above (see (2.21)). Substitute (3.46) into (3.47); then using the 
notation of (2.10) and returning to the 'physical' time variables t = r / p  and to the 
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pressure amplitude A' = ~ z M - ~ A  and again denoting A' by A ,  we write the evolution 
equation as 

fi 73 d7 a2 d d ( t  - 7) A(t - W) X((t - (1  + a) T ) ,  (3.48) 
i aA 

-It -+ SMI, A = 2nia 
m at 

\ 

1 (3.52) 

where (3.49) 

We defer the analysis of this equation to  $4, first deriving the evolution equation in 
the regime with a viscous CL. 

3.3. The evolution equation in the regime with a viscous CL 
3.3.1. Scaling 

According to  $3.1, we put 

(3.50) 

where q = 0(1), and A << 1 is the scale of a viscous CL, and in this case p = €'/A4. 

3.3.2. The outer problem 
There are no substantial differences here from the case of an unsteady CL; 

(3.51) 

however, another ordering arises : 

where now 
p1 = p(1) + Apy + p p y  + Ppl'" + App15' + . . . , 

p?' = A ,  pi2) = AqY(i+B*),  

p i 3 )  = a"' iq aAi, pi4) = [ql +qq2(f+B*)] P A ,  
m52: a7 
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Here the main nonlinear contribution is made by the last term on the right-hand side 
of (3.54). For the case considered here it is necessary to adopt a new ordering of the 
harmonics : 

Pl = Pp’ + hpy + pP?’ + A2Pi4’ + ApPy + . . . , 
v, = vp’ + A v y  + p vy’ + A2Vi4’ + npv y) + . . . , 
u1 = UI]-’+h-’pU~2’+AU~S’+pu:4’+ ..., 

Po = Pp - + . . . , v, = V p E  + . . . , uo = U p E 2 / A 2  + . . . . E 

A 

The evolution equation is obtained by matching Pp to pi6) at order O(Ap) = 0 ( 2 / A 2 )  
at the fifth step of the iteration process for Pl. The second harmonic, as before, is not 
needed. 

Omitting the subsequent derivation, we shall write only the expression for the 
zeroth harmonic of azimuthal velocity Uo which replaces (3.38) for the case of a 
viscous CL : 

(3.56) 

where we designated s = ImQ$, and &x) is a function known from previous papers 
(see e.g. Churilov & Shukhman 1987a) satisfying the equation q5”(x)-ixq5(x) = -i 
with the asymptotic representation in the region (i.e. when 1x1 +. co)-in < 
arg (x) < in. 

Finally, we write the nonlinear equation in the regime with a viscous CL (in 
‘physical ’ variables) as 

(3.57) 
i d A  

-It - + dMIM A = ian(i)ff (5) ( . S ~ ~ ~ ) - * A I A ~ ~ .  
m dt 

The appearance of the numerical coefficient in (3.57) is associated with the integral 

1 q 5 ( ~ )  l 2  dx = ~(#)‘r()). rm 
The expression for a is given by (3.49). 

4. The analysis of solutions of the evolution equations 
Let us determine the character of solutions described by equations (3.57) for a 

viscous CL and (3.48) for an unsteady CL. Let us begin by considering the simpler, 
viscous case. 

4.1. The evolution of disturbances in the regime with a viscous CL 
Through the replacement A = B exp ( - imAQ, t )  (IItlam)i, where 

equation (3.57) is reduced to the form: 

01 = an(#)ir()) (s’~i)-~, AQ, = -Re ( I M / I t )  &ill, 

y,B = e-i@BIB12, (4.1) 
dB 
dt 
-- 

where ex? (i@) = It/ l l t l .  The solutions of (4.1) (the so-called Stuart-Watson-Landau 
equation) are well known ; therefore, let us recall only briefly the results. Depending 
on the sign of Re (el*), three cases are possible. 

20 FLM 233 
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(i) cos@ > 0. 
Here a solution of the explosive type arises with the asymptotic behaviour 

(ii) cos$ < 0. 
The asymptotic solution has a finite, time-independent, amplitude and phase 
increasing linearly in time (the extreme point of vector B on the complex plane B 
uniformly rotates in a circle) 

B = B,  exp (iyLt tan $), IB,I2 = y,lcos $I-'. (4.3) 
(iii) @ = *+IT. 

Here the nonlinear term is a purely imaginary one, and we have simply a nonlinear 
correction to the frequency : 

B = B o e x p  T s e 2 y L t + y L t  =B,exp(y,t)exp ( Ti I IBI2dt ) . (4.4) 

The value of @ = arg(It/lI,l) is wholly determined by the solution of the linear 
problem and, more exactly, by the argument of the complex integral I , .  A numerical 
calculation of It  shows that @ lies within the interval from 0 to $ti i.e. case (i) is 
realized, which corresponds to the explosive instability IB( - (to -t)-z. 

4.2. The evolution of disturbances in the regime with an unsteady CL 

{ 2YL I 

We again take A = B exp ( - imAQ, t) ( IItl/2nma)i and obtain 

yLB = e-ifi Joa 73 d7 s,' cr2 dcr B(t - 7) B(t - 87) B(t - (1 + cr) 7 ) .  (4.5) 
dB 
dt 
_- 

By analogy with the viscous CL it seems that if Re (e'k) > 1, there will be an 
explosive regime. It appears that this is indeed the case and, moreover, the explosive 
regime also occurs when Re (e'@) < 0. Even with Re (e'k) = - 1 ($ = 'IC) when the 
nonlinear term has a 'stabilizing' sign, an unlimited growth of amplitude occurs. 
Such unusual behaviour of the solution is associated with the integro-differential 
character of (3.48) which distinguishes it substantially from the time-local equation 
(3.57). Here the amplitude 'remembers' all its past history. 

It is easy to determine the asymptotic law of the explosive solution. By dropping 
at  the explosive stage the term y,B in (4.5), we obtain 

B = B (t -t)-$fiS * o  

For determining B, and p, we have 

The parameter /3 = p($) will be determined from (4.7) : 

Im { I ( p )  e-'@(i+ ip)} = 0. 

We must choose the roots /3 of equation (4.8), for which 

Then 

j = Re { I ( p )  e-'k($ + ip)} > 0. 

p*12 =j-1[($)2+p2]. 
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FIQURE 4. The dependence of p on $ for the esxmptotic solution in the unsteady CL regime : 
B - (to-t)-s+ip($). 

Equation (4.8) with the condition (4.9) was solved numerically. The result is 
shown in figure 4 and equivalent results appear in figure 1 of G&L. The function 
B($)  is single-valued when I$l < ;A and is double-valued when ;A < $ < A and 
-n < $ < -$A. A numerical solution of the complete equation (4.5) for different $ 
shows that there is a branch of the plot through the origin. 

Some words about the case $ = +sc are in order. It would seem that here /3 must 
be zero because the initial equation for $ = & A is purely real. Indeed, when $ = f n 
the solution is not described by formula (4.6) ; however, when $ slightly differs from 
+A, the solution behaves according to (4.6). 

In order to confirm the asymptotic solution (4.6) and to determine the moment of 
‘explosion’ to, it is necessary to solve the complete equation (4.5). It can be reduced 
to a universal form; i.e. the form which contains a unique parameter $. 

Let us make a substitution in (4.5) : B(t) = b( t )  exp ( Y L t ) .  When t +- .o,B(t)  has 
the asymptotic behaviour B(t) = b, exp (yL t )  ; therefore, the asymptotic behaviour 
for b(t)  is thus : b(t) = b, when t + - 00. Let us now introduce the ‘logarithmic ’ time 

T = P o l Z  exp (2YL 4 (2YL)-* 
and a new amplitude 

By considering C to be a function of T, we obtain 

C = bo/b .  

with the initial condition C(T = 0) = 1. 
Equation (4.10) was solved numerically for five values of $: 0, in, in, 0.95x, and 

A. When $ = 0 and A, the amplitude C remains real throughout the entire evolution 
and can be represented on the plots as a function of T. For @ = 0, the amplitude 

20-2 
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$ = O  

T 

Re C 
$ = 0.951 

FIQURE 5. The time dependence of the C(T) amplitude in the unsteady CL regime at different 
values of the parameter +. (a) C(T) for = 0 and X .  Here C(T) is real. ( b )  Evolution paths of the 
C amplitude on a complex plane for y? = in, $t, and 0 . 9 5 ~ .  (The results given here have been 
obtained through a numerical solution, but in the figure they are reproduced only schematically.) 

increases monotonically and goes to infinity when T x 31. When $ = n, C(T) 
performs oscillations with increasing swing, whose amplitude grows without bounds 
when T-t a. For $ = in, in, and 0.95n, C is complex and it is more convenient to 
represent it in parametric form on a complex plane C: (ImC(T), ReC(T)). Curves 
traced by the extreme point of vector C represent untwisting spirals, which start a t  
point C = 1.  As one would expect, the smaller @ is, the earlier the solution reaches 
the explosive regime (singularity for $ = 0, i x ,  and in is reached when T x 31, 38, 
and 71, respectively). When $ = 0.95x, the spiral is very much flattened towards the 
imaginary axis (i.e. in general, the imaginary part is small compared with the real 
one). This agrees with the suggestion of a limiting transition to the case $ = x .  The 
singularity here is attained very late (T > 1000). 

The qualitative behaviour of the curves is shown in figure 5. Remember that in 
our problem the values of $ calculated from linear theory lie within the range 
0 -= $ < in. 
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As has already been pointed out in the Introduction, an analysis of the evolution 
equation was made by this author and by Goldstein & Leib (1989) independently of 
each other. The difference between the two analyses lies in the fact that we have been 
able to represent the results in a more universal form. This is achieved thus: we 
reduced a two-parametric equation (4.5) to a one-parametric equation (4.10) by 
introducing a ‘logarithmic’ time. In this case the character of the evolution is 
uniquely defined by the quantity t,b only. 

5. Conclusions 
Let us now construct an overall picture of the evolution of an originally small 

disturbance. According to the previous discussion, there are two scenarios for the 
evolution, which are determined by the initial value of y L .  

In  this case there are three stages in the development of a disturbance. 
(i) IAl < ( Y ~ v ~ ) ; .  The evolution proceeds according to linear theory: 

(ii) (yLv$; < IAl < vi. In  this stage, an explosive growth of amplitude occurs 

(1) YL < f 

I 4  - exp (YLt).  

IAl - (t,-t)-i. according to the law 

(iii) IAl > vi. The explosive growth continues, but according to a faster law 

JAl - ( t 1 - t ) 3  

Stages (i) and (ii) occur in the regime with a viscous CL, and stage (iii) in the regime 
with an unsteady CL. 

(2) YL > d 
There are two evolutionary stages, both occurring in the regime with an unsteady 
CL. 

(i) IAl < y\. Linear theory holds here: 

(ii) JAl > Y!. An explosive growth of amplitude occurs according to the law 
I 4  - exp (YL t ) .  

IA( - (t,-t)-i. 

We have illustrated this evolution on the amplitudesupercriticality diagram (figure 
3) with the aid of arrows of different forms. 

Thus, in this paper it has been shown that even with a small initial supercriticality 
the spiral wave amplitude reaches a small value, and stabilization of the instability 
can occur only at  the level 6p/p - O(1). 

Note that instead of two nonlinear equations corresponding to two CL regimes, 
viscous and unsteady, one can derive one general equation that can describe both 
regimes at once : 

i d A  
m dt 
-It - + &.MIM A 

where 

N = 2rc (om 73 d7 [ a2 daA( t  - a.r)A(t  --7)L(t - (1 

= i d ,  (5.1) 

+ a)  7 )  exp { -gvs3a2( 3 - a)  73}, 

s = lmf2hli. (5.2) 
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It is easy to show that in the two limiting cases corresponding to a viscous CL (when 
the integral has no contribution from the ‘past ’) and an unsteady CL (when one can 
put v = 0 ) ,  we obtain, respectively, (3.57) and (3.48). However, this general equation 
(5.1) defies a simple analysis such as we have been able to make. Besides, its 
derivation is substantially more cumbersome. Therefore, we have given preference to 
the form of presentation given in $3. 

Note also that throughout this paper we have varied M at fixed D. The opposite 
is also possible. In this case, only the explicit expressions yL and AG?, are changed (in 
(2.16) and (2.17) 1,dM should be replaced by IDSO). 

In Hickernell’s (1984) paper also an attempt is made to analyse the evolution of 
disturbances in a situation with a singular point. For that purpose, a model of a zonal 
shear flow on the /3-plane was chosen. Similar to our condition (~”2l2); =i= 0 it was 
assumed that the derivative of absolute viscosity at the critical level does not go to 
zero: (U”-/3)c + 0 (the case with (u”-& = 0 is considered in Churilov & Shukhman 
1986, 19876 and Churilov 1989). The equation obtained in Hickernell (1984) is 
similar to our equation (5.1) and to equation (5.7) in G&L. The difference between 
Hickernell’s equation and ours is associated only with the fact that he specified the 
initial conditions for t = 0, instead of the formulation with ‘adiabatic inclusion’ of 
disturbances when t + - 03 adopted by us. This complicated the character of the 
nonlinear term in his equation, and it seems likely that it is for that reason that he 
was unable to obtain any specific results on the character of the evolution of 
disturbances. 

A comparison of our results with those reported by Hickernell demonstrates the 
remarkable property of the universality of nonlinear evolution equations in those 
problems where the main nonlinearity is attributable to processes occurring in a 
critical layer. It appears that the form of the nonlinear terms of these equations 
depends only on the character of the resonant point and does not depend on the 
structure of the flow as a whole. The entire difference in amplitude equations for such 
(at first glance, dissimilar) physical models as a compressible circular shear layer and 
a zonal incompressible flow on the @-plane is contained in the linear part of the 
problem and is reduced to specifying the phase $ = arg (IJPJ).  However, a still more 
surprising factor emerges when comparing Hickernell’s and my models, on the one 
hand, and G&L’s model, on the other. It appears that the evolution equation 
obtained involves an even greater universality than might be anticipated, if judging 
only from the analysis of peculiarities of eigenfunctions of the neutral mode. While 
for our case and that of Hickernell’s these peculiarities are the same, in the G& L case 
the eigenfunctions have a totally different type of singularity at  the critical level and, 
accordingly, a different structure of the critical layer. Nevertheless, the final 
evolution equation has the same form. 

I am grateful to Dr S. M. Churilov for helpful discussions, to anonymous referees 
for useful comments, and to Mr V. G .  Mikhalkovsky for his assistance in preparing 
the English version of the manuscript and for typing and retyping the text. 



Nonlinear evolution of spiral density waves 609 

Appendix. Calculating the growth rate and frequency of the m = 1 mode 
for small Mach numbers and for arbitrary values of D < 1 

We proceed from the equation for disturbed pressure (2.3): 

1 
- (1 -22)- - -- -+-? 
0 2  a z ~ ( a , , Z )  a2 A D A 

a 1 - 2 2  ap {I 1 i-z2[-(  a,+- i 2 2 )  

Here 

(1 - 2 2 )  (Z/D- 1) } p  = - M z ( E ) D p .  (A 1) + a, -a( 1 - 2 )  

, z = tanh(;), A(G?,,z) = ( f 2 p - ~ ~ - ( l - z ) 2 ( l - ~ ) .  

Note that when M = 0, (A 1) has the solution for an arbitrary a,: 

(or, equivalently, but in other variables p = (51i-522(r) r )  and the solution satisfying 
the boundary conditions, requires that 52, = 0. 

We now put 
52 P = €0, M = el-@p, e < 1. (A 3) 

Such a scaling, as will be shown below, must be chosen for correct matching. The 
point here is that the standard procedure of perturbation theory does not apply and 
it is necessary to apply the method of matched asymptotic expansions. Let us 
establish what asymptotic representations for p occur in different regions. When 
r +  a, or when z-+ 1, (A 1) has the asymptotic solution p - Kl(MI'r), where K is 
MacDonald's function, and r = -i52,. When r 4 1/MT - (1/pw) e-'+@, or when 
(1 - 2 )  % e4/O-I the asymptotic p is 

Another (characteristic on the axis (1 - z ) )  point is defined by the condition 52, - G?, 
or (1-2) - E. Further, when r+O, or when z+-1 

Thus, the axis (1 - 2 )  is now divided into three regions: I, 0 < (1 - 2 )  < e4/O-I; 11, 
e4lD-l < (1 - 2 )  5 E ,  and 111, E 5 (1 - 2 )  < 2. Region I will no longer play any role in 
the calculations to follow. The task is to find a solution in the region 1 - 2  - O(E)  that 
will match, on the left, with (A 4), and on the right with a solution of (A 1) in region 
I11 that has a correct asymptotic representation when T --f 0 (1 - z + 2), i.e. (A 5). 

We start by determining the solution in I11 when 1-2  % E. Here (1 - 2 )  % 52, and 
one can proceed according to usual perturbation theory. We get 

p - r-1 - (1  - z ) @ .  (A 4) 

p - + 0p3) - (1 + z)@ + 0(M2r3) .  (A 5 )  

p = p ,  + ep, + E S P 2  + e2-Dp2p3 + . . . , (A 6) 

where 

2'  
1 +z, 

p3  = - p ,  D2 ll (20- :) (1 - z ~ ) ~ - ~ (  1 + ~ ~ ) - l - ~  dz, (1 - Z ~ ) ~ - ~ D (  1 + z2)2D-1 dz 
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The limits of integration in (A 8) are chosen such that, when z - t -  1 ,  the impurity of 
the solution (1  + z)-iD - l / r  which arises with a different choice, should be excluded. 
We have 

p, - ( l + ~ ) ~ ~ / ~  - r3 when z + - l ,  

p, = kl(l-z)iDA when z+ 1, 

(A 9) k = -2-3-@- O2 p (1 - x)~-,O( 1 + x ) ~ ~ - ~  dx. where 1 0 - 2  -1 

Thus, we write now the asymptotic expansion (A 6), when (1 - z )  4 1,  in explicit form 

p = A{ - i 2@( 1 - 2)z- tD + 2iD&32( 1 - z)-iD + E2-Dp2kl( 1 - z)@}. (A 10) 

By introducing the variable Y in the form 

from (A 10) we obtain 
1-22 = EY, 

p = A2&2-iD( +p-@ + w2y-iD + 2- 3) y 2kl f i D ) .  (A 11) 

(Hence the scaling chosen, (A 3), becomes understandable.) We shall call (A 11) the 
internal asymptotic expansion of the outer solution. 

Let us consider now the inner region 1-2  = O ( E ) .  Assuming 1 - z  = EY, from (A 1 )  
we get 

Here we designate 

We write at leading order the solution of (A 12),  bearing in mind its subsequent 

6 = (w-$Y)2- P ( 1 -  l/D). 

matching when Y+ 00 with (A 11) 

p = {XpJ Y) +BPb( Y)} EZ-fD, 

pa( y) = 2tD(U2 - Sp) y-iD, where (cf. (A 2)), 

WhenY + 00 

where 

Upon substituting (A 14) and (A 16) into (A 13),  we obtain for p when Y+ 03 

p = {x(wz-LyZ) 4 Y-@'2#'+kk,BfiD}~2-@. (A 17) 

The matching of (A 17) and (A 11) gives the connections : 
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Next, from (A 13), with the aid of (A 14), (A 15) and (A 18), we find that when 
Y+O 

This solution must be matched with the solution in region I1 (A a), i.e. with p - f i D .  
This yields 

(A 20) 
k 

2D+p2'I(w,D) = 0. 
k2 

Assuming w = i7, we write (A 20) in the form 

2 D + p 2 7 D - 2 i J ( D )  k = 0. 

By calculating J(D)  and k,/k2, we get 

(1 -20) (1 -9) (1 - D ) .  
k 1 xD2 
k2 4 sin (27c/D) 
- 

With the help of (A 22), from (A 21) we find 

So that the growth rate and frequency of the m = 1 mode are 

2(2 - D )  ' 
y = IZ Re 7 = {I@F(D)}1/(2-D) cos 

The function P ( D )  is defined in the main text. 
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